CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE
== CORRECTION ==

EXERCICES DU CHAPITRE Il : OPERATIONS PRISES EN CHARGE PAR LES TABLES DE HACHAGE

Exercice I.1 — Est-ce qu’une table de hachage est adaptée ?

Liste Python :
- On peut stocker une liste de couples (code_article, quantité) par ex. : [(10542, 3),
(75601, 5), (43010, 12), ...].
- Pour récupérer la quantité du code 75601, on parcourt la liste et on teste chaque
couple jusqu’a trouver code_article == 75601.
Dictionnaire Python :
- On stocke stock = {10542: 3, 75601: 5, 43010: 12, ...}
- Pour la quantité du code 75601 : stock[75601] = acceés direct.
Complexité :
- Liste : recherche linéaire = en gros O(n) comparaisons, donc jusqu’a 10 000
comparaisons si 10 000 articles.
- Dictionnaire (table de hachage) : recherche moyenne O(1).
La table de hachage est clairement mieux adaptée pour ce type d’acces par identifiant.

Exercice I.2 — Clé ou valeur ?

Employés :
- Clé possible : Numéro de sécu : unique, stable, identifiant “officiel”.
- Les autres infos (nom, date d’embauche...) dans la valeur.
Catalogue en ligne :
- Clé possible : Identifiant numérique interne (SKU, ID) : unique, stable.
- Nom, prix, etc. dans la valeur.
Agenda:

- Clé possible : Date/heure (timestamp), éventuellement combinée au lieu. Mais
attention, plusieurs événements simultanés peuvent exister. Il faut donc soit stocker
une liste d’événements pour une méme date/heure, soit utiliser un autre identifiant
unique et mettre date/heure dans la valeur.

Quizz 1 — Notion de clé & dictionnaire

1. C—Uneclé sert a identifier une valeur.

C — La seconde affectation écrase la premiere ("Alice": 2).
B — L'intérét principal : accés rapide par clé.

C — Le numéro de sécu fait une clé idéale.

Vrai — Plusieurs clés peuvent avoir la méme valeur.

o v kA wN

Faux — Les clés sont uniques : une clé n’apparait qu’une fois.




CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Python 1 — Déduplication avec set/dict

def ip_uniques(ips):
vues = set()
resultat = []
for ip in ips:
# si ip n'a pas encore été vue
if ip not in vues:
vues.add(ip)
resultat.append(ip)
return resultat

Python 2 — Compter les occurrences de mots

def compter_mots(mots):
d = {}
for mot in mots:
if mot in d:
d[mot] = d[mot] + 1
else:
dlmot] = 1
return d

EXERCICES DU CHAPITRE Il : OPERATIONS PRISES EN CHARGE PAR LES TABLES DE HACHAGE

Exercice Il.1 — Identifier les opérations

1. « Vérifier si le client 1234 existe déja » : recherche.

2. « Ajouter un nouveau client 5678 » : insertion.

3. « Supprimer le compte du client 1234 » : suppression.

4. « Mettre a jour I'adresse e-mail du client 5678 » : on fait d’abord une recherche de la
clé 5678, puis on modifie la valeur associée. On peut voir ca comme « recherche +
écriture de la valeur ».

Exercice 1.2 — Tableau impossible

1. Chaines de longueur 5 sur A-Z : Nombre de chaines = 26°= 11 881 376
2. On n’utilise que 1000 prénoms distincts :
Cases utilisées : 1000.
Cases totales : 11 881 376.
Proportion utilisée = 1000 / 11 881 376 = 0,000084 : quasi tout est vide.

3. Un tableau indexé par toutes les chaines possibles gaspille presque toute la mémoire.
Une table de hachage n’a besoin que d’un nombre de cases proportionnel au nombre
de prénoms réellement stockés, pas au nombre total de chaines possibles ce qui
apporte un énorme gain de mémoire, tout en gardant des accés rapides.




CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

EXERCICES DU CHAPITRE Il : EXEMPLES D’APPLICATIONS

Exercice lll.1 — Simuler une déduplication a la main

Flux:[A,B,C,A,D,B,EC,F]

On maintient I'ensemble Vus :

A:
:Vus = {A, B}

:Vus ={A, B, C}

: déja dans Vus = ignoré
:Vus = {A, B, C, D}

: déja dans Vus = ignoré
:Vus = {A, B, C, D, E}

: déja dans Vus = ignoré
:Vus ={A, B, C, D, E, F}

MO M@O>O®

Vus = {A}

IP distinctes observées : {A, B, C, D, E, F}, dans I'ordre d’apparition : A, B, C, D, E, F.

Pour compter les visites par IP : au lieu de simplement stocker « vue ou pas vue », on stocke
un compteur par IP (ex. dictionnaire compte[ip] += 1 a chaque occurrence).

Exercice IlIl.2 — Pourquoi mémoriser les sommets visités ?

1.

Sur un graphe avec cycles, le BFS risque de revisiter les mémes sommets en boucle.
On peut tourner indéfiniment ou au moins exploser le temps en revoyant sans arrét
les mémes arétes/sommets.

Avec la table visited :

a. Onva utiliser comme clés les sommets eux-mémes (leurs identifiants).

b. On ajoute un sommet u a visited quand on le découvre pour la premiére
fois (au moment ou on I'enfile dans la file, ou juste avant). Cela garantit qu’on
ne le traite qu’une seule fois.




CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Python 4 — BFS avec ensemble visited
from collections import deque

def bfs(adj, s):
visites = set()
file = deque()
resultat = []

# initialisation
visites.add(s)
file.append(s)

while file:
u = file.popleft()
resultat.append(u)
for v in adj[u]:
# si v n'a pas été visite,
# 1le marquer et 1'ajouter a la file
if v not in visites:
visites.add(v)
file.append(v)

return resultat

EXERCICES DU CHAPITRE IV : IMPLEMENTATION - IDEES GENERALES

Exercice IV.1 — Pourquoi la liste n’est pas suffisante
La liste contient quelque chose comme : [ip1, ip2, ip3, ..., ip10000] (ou des couples (ip, info)).

Pour savoir si ip0 est présente, on parcourt la liste du début a la fin, en comparant ip0 avec
chaque ip_i donc au pire il y a 10 000 comparaisons.

Avec une table de hachage :
- On calcule un hash de ip0, ce qui donne un indice dans la table.
- Onneregarde qu’un seul seau (ou une petite liste / quelques cases en adressage
ouvert).

Le temps moyen est indépendant du nombre total d’IP (O(1)), tant que la table est bien
dimensionnée.

Exercice IV.2 — Calculer des indices de hachage
Table de taille n = 10, h(k) = k mod 10.

1. h(7)=7 h(12)=2 h(25) =5 h(30)=0 h(44)=4
2. Insertion dans le tableau (sans collisions pour l'instant) :

Case7:7 Case 2:12 Case 5:25 Case 0:30 Case 4 :44

Pour ces valeurs-13, la distribution semble raisonnablement répartie (indices différents, pas
de gros « amas »), méme si I’échantillon est trés petit.




CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice IV.3 — Collisions inévitables

1.

2.

Principe des tiroirs : Si on a plus d’objets que de cases (plus de clés que de
compartiments), alors au moins deux objets doivent partager une case. Doncsi |U| >
n, il y a forcément x#y avec h(x)=h(y).

Anniversaires : Il suffit de 23 personnes pour avoir = 50% de chance d’un anniversaire
commun, alors qu’il y a 365 « cases » possibles. L'intuition naive « il faudrait
beaucoup plus de 23 personnes pour ¢a » est fausse. Les collisions arrivent

« rapidement ».

Conclusion : Méme avec une table beaucoup plus grande que le nombre d’éléments,
on ne peut pas espérer aucune collision. Il faut accepter les collisions et prévoir une
stratégie pour les gérer.

Exercice IV.4 — Simuler une table avec chainage

1.

w

Table de 5 seaux, h(k)=k mod 5. Clés : 7,12, 17, 22, 3, 8.

e 7mod5=2->seaul:|[7]

e 12mod5=2->seau?:[7,12]

e 17mod5=2->seau:[7,12,17]

e 22mod5=2->seau2:[7,12,17,22]

e 3mod5=3->seau3:[3]

e 8mod5=3->seau3:|[3,8]

Etat final :

0:1] 1:] 2:[7,12,17,22] 3:[3, 8] 4:]
Nombre moyen d’éléments par seau : Total = 6, n =5 donc une moyenne = 6/5 =1,2.
Pour rechercher la clé 22, on calcule h(22)=2 donc on va au seau 2. On parcourt la
liste [7, 12, 17, 22] dans I'ordre jusqu’a trouver 22.

Exercice IV.5 — Sondage linéaire a la main

1.

10 : h=3 - case 3 est libre > on met 10 en 3.

24 : h=3 - case 3 occupée (10) - on teste 4 - libre - 24 en 4.

31 : h=3 - case 3 occupée, 4 occupée - on teste 5 = libre - 31 en 5.

45 : 45 mod 7 =3 - 3,4,5 occupées - on teste 6 - libre > 45 en 6.

18 : 18 mod 7 =4 - 4 occupée -» on teste 5,6 occupées - on teste 0 - libre - 18
en 0.

Etat final (par indices 0..6) :

0:18 1:vide 2 :vide 3:10 4:24 5:31
6:45

Recherche 18 :

h(18) =4 - on teste 4 (24, pas 18) - 5 (31) - 6 (45) > 0 (18) = trouvé a 0.
Recherche 11 :

h(11) =4 - on teste 4 (24) - 5 (31) - 6 (45) - 0(18) = 1 (vide).

En tombant sur une case vide dans une zone qui a déja été sondée, on peut conclure que 11
n’est pas dans la table (s'il y avait été inséré, on I'aurait rencontré avant de tomber sur cette
case vide).




CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice IV.6 — Bonne ou mauvaise fonction de hachage ?

1.

h(k) = 0 (pour tous k) : Toutes les clés vont dans le méme compartiment, c’est
catastrophique : temps de recherche O(n).

h(k) = k mod 1000, salaires multiples de 1000 : Si salaire = 23 000, 45 000, etc., on a
toujours k mod 1000 = 0 donc toutes les clés tombent en 0, c’est encore
catastrophique.

h(k) = (a-k + b) mod 1000 : Si toutes les données sont encore strictement des
multiples de 1000, le probléme persiste (car a-k serait multiple de 1000).

Mais si on a une partie de données variées, c’est un peu mieux que h, car on casse la
structure simple « multiples de n ». Cela Reste néanmoins fragile si les données sont
tres réguliéres.

h(chaine) = hash polynomial mod n, n premier : Avec des chaines variées et un n bien
choisi (premier, pas lié a la base), c’est une fonction raisonnablement bonne : peu de
structure exploitable, collisions raisonnablement réparties.

Quizz 2 - Fonction de hachage & collisions

uohWwWN

B — Déterministe et rapide, avec la méme clé donc méme résultat.

C — Collision = deux clés différentes dans le méme compartiment.

B — Plus de clés que de compartiments donc au moins une collision.

B — h(k) = 0 met tout dans le méme compartiment.

Faux — Principe des tiroirs : si l'univers des clés est plus grand que le nombre de
cases, collisions inévitables.

Quizz 3 — Chainage & adressage ouvert

o WwN

B — Une liste (ou chaine) des clés qui y tombent.

C — On teste d’autres cases selon une séguence déterminée.

C — Sondage linéaire crée des « grappes » de cases occupées.
Vrai — On a des marqueurs DUMMY pour les cases supprimées.
Vrai — Plus o augmente, plus les listes s’allongent en chainage.




CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Python 4 — Mini table de hachage avec chainage

def creer_table(n):
# crée une table avec n seaux vides
return [[] for _ in range(n)]

def h(k, n):
return K % n

def inserer(table, cle):
n = len(table)
i = h(cle, n)
seau = table[il
# insérer "cle" si elle n'est pas déja présente
if cle not in seau:
seau.append(cle)

def rechercher(table, cle):

n = len(table)
i = h(cle, n)
seau = table[il]
# renvoyer True si cle est dans le seau, False sinon
for x in seau:

if x == cle:

return True

return False

Python 6 — Simuler I’adressage ouvert (sondage linéaire)

def creer_table(n):
return [None] * n

def h(k, n):
return K % n

def inserer(table, cle):
n = len(table)
i = h(cle, n)
# sonder jusqu'a trouver une case vide ou la clé déja présente
for _ in range(n): # on limite a n sondes
if table[i] is None:
table[i] = cle
return
elif table[i] == cle:
return # déja présent
i=(+ 1) %n # case suivante

tab = creer_table(5)
for k in [1, 6, 11]:
inserer(tab, k)




CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

EXERCICES DU CHAPITRE V : FACTEUR DE CHARGE ET PERFORMANCES

Exercice V.1 — Calculer et interpréter a

1.
2.
3.

20 éléments : a =20/100 = 0,2 : trés peu chargé, trés bon.

50 éléments : a = 0,5 : table a moitié pleine, bon compromis.

80 éléments : a = 0,8 : table tres chargée, risque de longues listes (chainage) ou de
sondages longs (adressage ouvert).

Exercice V.2 — Admissible ou pas ?

1.

Chainage, n=1000, a=0,5, bonne fonction : Longueur moyenne des listes = 0,5 donc
acces moyen O(1). Comportement proche de constant.

Chainage, n=1000, toutes les clés dans le méme seau : Une liste de taille = 1000 donc
recherche dans ce seau = 0(1000) = O(n). On est dans le pire cas.

Adressage ouvert (double hachage), n=10 000, a=0,7 : Temps moyen = O(1 / (1-a)) =
0O(1/0,3) = O(3) : constant raisonnable. Acceptable.

Adressage ouvert (sondage linéaire), n=10 000, a=0,95 : 1/(1-a) = 1/0,05 = 20 : tres
gros cluster, sondages tres longs. Recherche peut se rapprocher de O(n).

Exercice V.3 — Faut-il redimensionner ?

1.

400 éléments : a = 400/1000 = 0,4 donc pas besoin de redimensionner (trés
confortable).

800 éléments : a = 800/1000 = 0,8 donc au-dessus du seuil 0,7 ; on redimensionne.
Redimensionnement a n = 2000 avec 800 éléments : Nouveau a = 800/2000 = 0,4
donc on revient a une table peu chargée.

On a payé un colt ponctuel élevé (réinsertion de 800 éléments), mais ce codt est rare
par rapport au nombre total d’opérations, donc le colit amorti d’une insertion reste
O(1) sur le long terme.

Quizz 4 — Facteur de charge & performances

1.

uhWwN

B — a = (nombre d’éléments)/n.

B — Avec adressage ouvert, o proche de 1 - sondages longs - tendance vers O(n).
C — Co(t ponctuel élevé, mais meilleur temps moyen ensuite.

Vrai — Stratégie classique : redimensionner quand a dépasse un seuil.

Vrai — C’'est le principe du colt amorti.

EXERCICES DU CHAPITRE VI : FONCTIONS DE HACHAGE UNIVERSELLES

Exercice VI.1 — Pourquoi une seule fonction ne suffit pas ?

1.

Une fonction de hachage fixe h : Un adversaire peut choisir un jeu de données

« malveillant » avec énormément de collisions (par ex. toutes les clés envoyées dans
le méme seau). Donc on ne peut pas garantir de bonnes perfs pour tous les jeux de
données possibles.

(A) « il existe une fonction bonne pour ce jeu » vs (B) « un tirage au hasard est bon en
moyenne » : (A) est existentiel : on ne dit pas comment trouver la bonne fonction.
(B) : si on choisit au hasard, on obtient typiquement de bonnes performances
(espérance controlée).

En pratique : On choisit une fonction aléatoirement dans une famille. On obtient
alors un comportement en moyenne bon sur n’‘importe quelles données, méme si
guelgu’un essaie de construire un jeu pathologique.




CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice VI.2 — Cette famille est-elle universelle ?

1. H,=toutes les fonctions U = {0, ..., n—-1} : Pour x # y, et h choisi uniformément parmi
toutes ces fonctions, les paires (h(x), h(y)) sont réparties uniformément parmi n?
possibilités. Le nombre de paires avec h(x) = h(y) est n (toutes les paires (i, i)). La
probabilité est donc n / n? = 1/n donc H est universelle.

2. H,=fonctions constantes h;(k) =i : Pour toute clé k, P[h(k) = i] = 1/n (la fonction
constante choisie est uniforme). Mais pour xzy, h(x) = h(y) toujours, car toute
fonction de H, est constante. Donc P[h(x) = h(y)] = 1, pas < 1/n - H, n’est pas
universelle.

Exercice VI.3 — Hachage d’adresses IP : calcul concret

1. ha(x)=2-10+5-0+3-5+1:3=20+0+15+3=38; 38 mod 11, reste 5 donc ha(x) = 5.
ha(y) =2:10+5:0+3-5+1:4=20+0+15+4=39; 39 mod 11 reste 6 donc ha(y) = 6.

2. Pasde collision: 5 #6.

3. Nombre d’opérations : 4 multiplications, 3 additions, un modulo (constante,
indépendante de la taille de la table) donc O(1).

4. Le fait que 11 soit premier : évite certaines structures de sous-groupes qui pourraient
créer des collisions systématiques (on garantit une meilleure « répartition » des
valeurs possibles).

Exercice VI.4 — Pourquoi choisir n premier, > 255 ?

1. n>255:L'idée clé dans la preuve de I'universalité de cette famille, c’est :
- on prend deux adresses distinctes x #y,
- onregarde leur différence coordonnée par coordonnée : 6; = xi - yi.

Comme chaque coordonnée est entre 0 et 255, &; est un entier entre -255 et 255.
Maintenant, on travaille modulo n. Si n > 255, alors un entier 6 tel que |8] < 255 ne peut étre
congruent a 0 modulo n que si 6 = 0. Donc si x; # yi et n > 255, alors &; = x; — yi n’est pas
congruent a 0 modulo n.

Autrement dit, dés que deux IP sont différentes, il existe au moins une coordonnée j telle
que (xj — yj) n’est pas congruent a 0 modulo n.

De plus quand on réécrit I'égalité ha(x) = ha(y) : a1:(X1- y1) + ... + aa:(xa- ya) =0 (mod n), on
veut montrer qu’il n’y a au plus qu’un seul choix possible de aj quand on fixe les autres, donc
une probabilité < 1/n. Pour ¢a, il faut que I'un des (x; - y;) soit non nul modulo n, sinon tout
s’écroule.

2. npremier : Dans Z/nZ, si n est premier, tout entier non nul est inversible. C’'est ce qui a
permis de montrer qu’il n’y a au plus qu’un seul choix possible de aj quand on fixe les
autres. Cela donne une structure algébrique meilleure, limite les solutions triviales des
équations qui conduisent a des collisions systématiques.

3. Lien avec IV.6.6 : On avait déja dit qu’il est conseillé de choisir n premier et loin des
puissances de 2 ou de 10 pour éviter que certaines régularités des données ne soient
« alignées » avec n. Ici, c’est exactement la méme idée.




CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice VI.5 — Longueur moyenne d’un seau avec hachage universel

1.

2.
3.

On a Xy=1si h(y) = h(x), 0 sinon. Longueur du seau : Zyesxy

Par universalité, poury # x : E[Xy] = P[h(y) = h(x)] £ 1/n.
Espérance de la longueur :

E[longueur]= E[zyesxy] = ZyESE[Xy] =m .E[Xy] <m-(1/n)=a
Interprétation : en moyenne, les listes (seaux) ont une longueur < a. Si a est borné

(par ex. < 2), alors une recherche infructueuse se fait en O(1 + a), donc en temps
constant en pratique.

Quizz 5 — Hachage universel

1.
2.

C—Pour x#y, P[h(x) =h(y)] £1/n.
D — But : garantir des performances bonnes en moyenne, méme contre des données
adverses.

EXERCICES DU CHAPITRE VII : DICTIONNAIRES PYTHON

Exercice VII.1 — Table d’indices vs table compacte

1.

Table d’indices : Chaque case contient soit EMPTY, soit DUMMY, soit un index vers la
table compacte. Elle est « clairsemée » car beaucoup de cases restent EMPTY pour
garder un faible facteur de charge.

Table compacte d’entrées (mode combiné) : Chaque entrée stocke : (hash, pointeur
vers la clé, pointeur vers la valeur). Elle est dense : toutes les cases 0 ... (n - 1) de
cette table sont occupées par des entrées valides (ou presque).

Ordre d’insertion : Les entrées sont ajoutées a la fin de la table compacte donc
I'ordre des indices de cette table correspond a I'ordre d’insertion. Quand on parcourt
le dictionnaire, on parcourt la table compacte dans I'ordre donc on retrouve I'ordre
d’insertion.

Localité mémoire : Les entrées sont stockées de maniére contigué ce qui entraine de
bonnes propriétés de cache. Mieux que des listes chainées ou des pointeurs
dispersés en mémoire.

Exercice VII.2 — Comprendrei=h & (m-1)

1.

h1=13:13 mod 8=5; 13 en binaire =1101, 7=0111; 1101 & 0111 =0101 =5.
ho=42:42mod 8 =2;42=101010,7 =000111; 101010 & 000111 = 000010 = 2.
h3=57:57mod 8=1;57=111001, 7=000111; 111001 & 000111 = 000001 = 1.
Dans les trois cas, h % 8 == h & 7. Conclusion : Quand m est une puissance de 2, h &
(m - 1) revient a prendre les k bits de poids faible de h, ce qui est équivalent a h % m.
Intérét : L'opération & (et binaire) est souvent plus rapide que le modulo général.
Implémentation simple au niveau machine, sans division.

10



CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice VIIl.4 — Insertion avec EMPTY et DUMMY
d["c"] =3 (h("c") compressé = 1) :

1.

@)
@)

O O O O O

On sonde 1 : occupé (index 0 ->"a").

On sonde 2 : DUMMY donc on mémorise cette case comme meilleure place
libre pour l'instant.

On sonde 3 : occupé ("b").

On sonde 4 : EMPTY donc fin du sondage.

Python va insérer "c" en réutilisant la premiére case DUMMY (2).

On ajoute une nouvelle entrée dans la table compacte (index 2 : ("c", 3)).
Table d’indices : case 2 - 2.

Adresse mémoire

0

1

2

(hash("a"), ptr_"a", ptr_1)

(hash("b"), ptr_"b", ptr_2)

(hash("c"), ptr_"c", ptr_3)

i 0 1 2 3 4 5 6 7
Valeur - 0 2 1 EMPTY | EMPTY | EMPTY | EMPTY
2. d["b"] =5 (mise a jour)
o h("b") compressé = 3.
o Onsonde 3 - index 1 - on retrouve "b".
o Mise a jour de la valeur (pointeur vers 5) dans I'entrée 1.
o Indices inchangés.
Adresse mémoire 0 1 2
(hash("a"), ptr_"a", ptr_1) | (hash("b"), ptr_"b", ptr_5) | (hash("c"), ptr_"c", ptr_3)
i 0 1 2 3 4 5 6 7
Valeur - 0 2 1 EMPTY | EMPTY | EMPTY | EMPTY
3. deld["a"]:
o Oncherche "a" : Supposons que h("a") compressé fasse qu’on retombe sur
I'indice 4, puis EMPTY, etc., jusqu’a trouver la case 1 - index 0 = "a".
o On marque la case de la table d’indices ou se trouvait "a" comme DUMMY.
o L’entrée 0 de la table compacte n’est plus utilisée (mais Python ne la

compacte pas forcément tout de suite).

Adresse mémoire 0 1 2
non . _II u’ - (hash("b”), ptr_"b", ptr_5) (hash(“c”), ptr_llcll’ ptr_3)
i 0 1 2 3 4 5 6 7
Valeur - DUMMY 2 1 EMPTY | EMPTY | EMPTY | EMPTY
4. d["d"]=4 (h("d") compressé = 1)

©)

©)
©)
©)
@)

On sonde 1 : DUMMY - possible emplacement.

Onsonde 2 :2 ("c") > occupé.

Onsonde 3:1("b") > occupé.

On sonde 4 : EMPTY - fin.

Python insére "d" en réutilisant la premiere DUMMY rencontrée (1).

11



CORRECTION DES EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

o Nouvelle entrée dans la table compacte (index 3 : ("d", 4)).
o Table d’indices : case 1 - 3.

0 1 2 3
L ¥ ta (hash("b"), ptr_"b", (hash("c"), ptr_"c", (hash("d"), ptr_"d",
pt=l) ptr_5) ptr_3) ptr_4)
i 1 2 3 4 5 6 7
Valeur 3 2 1 EMPTY | EMPTY | EMPTY | EMPTY

Exercice VII.5 — CoQt moyen vs pire cas dans dict

1.

2.

Dico classique, 10 000 entrées, a = 0,6 : Table bien dimensionnée, bonne distribution
donc opérations en O(1) en moyenne.

Dico attaqué, sans hachage randomisé : Un adversaire peut fabriquer des chaines qui
ont toutes le méme hash pour engendrer des collisions massives. Les opérations
peuvent devenir O(n) dans le pire cas.

Dico attaqué, mais avec hachage randomisé + redimensionnement : L’adversaire ne
connait pas la fonction de hachage exacte. Tres difficile de provoquer des collisions
systématiques donc le colt moyen reste O(1) (méme si quelques cas isolés peuvent
étre plus longs).

Redimensionnement : Une insertion donnée peut faire re-hasher toutes les entrées
donc colt O(n) pour cette insertion. Mais ces événements sont rares donc ils sont
amortis sur beaucoup d’insertions, le cot moyen par insertion reste O(1).

Quizz 6 —dict Python

1.

2.
3.
4

B — La table d’indices est sparse (beaucoup de cases vides).

C - En pratique, les clés doivent étre hashables et immuables.

Vrai — Hash randomisé pour str/bytes (entre exécutions).

Faux — Depuis Python 3.7, l'itération respecte I'ordre d’insertion, pas I'ordre de
hachage.

Python 5 — Clés hashables ou non

d = {}

d[42] = "entier"” # OK : int est hashable

d["hello"] = "chaine" # OK : str est hashable

df(1, 2, 3)] = "tuple" # OK : tuple immuable est hashable
liste = [1, 2, 3]

# d[liste] = "liste mutable" # ERREUR : 1list n'est pas hashable
ens = {1, 2, 3}

# dlens] = "ensemble mutable" # ERREUR : set n'est pas hashable

Corrections possibles : utiliser une version immuable :

dltuple(liste)] = "liste immuable"
d[frozenset(ens)] = "ensemble immuable"

Explication : 1ist et set sont mutables donc leur hash pourrait changer. Python interdit leur
usage comme clé. Les tuple et frozenset sont immuables donc ils sont hashables donc
utilisables comme clés.

12



